第十八章:国决开始

    第十八章:国决开始 (第2/3页)

常的决赛来看,差不多有一半以上的学生都没法在三小时内做完这四道题目。

    不过这是用来筛选人才的,难一点也很正常。

    毕竟大家都能考满分了,又怎么区分谁更强大呢。

    所以在物竞国决上拿到满分的人,寥寥无几,一年都不一定能出一个。

    徐川也没有多想,检查完试卷后看向题目。

    第一题(64分)

    2014年6月“CZ二号丙”运载火箭升空,与太空站成功对接,这里涉及到追击者(“CZ二号丙”运载火箭)与目标(太空站)在绕地轨道相遇的问题。

    本题采用霍尔曼变轨方案来探究追击者如何改变速度(速率和方向)与固定轨道上的目标实现对接(相遇)。

    如图2a,目标A和追击者c都在以半径为ro的圆轨道上以速率n逆时针运动,在0时刻两者的位置分别为0A;=0o,0i=0,rA;=rai=ro;

    在此时刻,追击者c瞬间点火,速度瞬间改变△(如图2b所示);c的轨道也从半径为r。的圆轨道瞬间变为图2c所示的椭圆轨道,椭圆轨道的长轴与极轴方向......

    ......目标Aro追击者c中心图2aVo+Ava追击者cAv椭圆轨道圆轨道。

    第一问(10分):若飞行物的质量m、能量E(实际为飞行物和地球组成系统的总机械能)和角动量L均为已知量,试用E、L、m和题给的已知参量To、2o等来表示轨道参量R、ε。

    已知:正椭圆轨道(长轴沿极轴方向)在极坐R标下的形式(原点取为右焦点)为r(6)=1+ε cosφ,其中,R是轨道尺寸参量,是轨道偏心率,统称为轨道参量。

    第二问(6分):写出点火(见图2c)后追击者c的轨道Rc(0c)的表达式,用ro、偏心率ε和φ表示。

    第三问(6分):写出点火后追击者c的轨道周期Tc与目标A的周TA之比Tc/Ta,用ε和φ表示。

    第四问:(18分)定义两個点火参数(见图2b):无量纲的速度大小改变δ=|△υ/υ0|之间的夹角α,(重合时α=0,顺时针方向取为正方向),

    (本章未完,请点击下一页继续阅读)