第八十二章:卡住的思路

最新网址:wap.88106.info

    第八十二章:卡住的思路 (第1/3页)

    突如其来的灵感让徐川一口闷掉了手里的感冒药,杯中温热原本微微有些泛苦的药水此刻变得甘甜无比,仿佛一杯蜂蜜水一样,沁人心脾。

    手中的杯子放下,他从抽屉中摸出一叠纸笔,平铺在桌面上演算起来。

    Weyl-Berry猜想的弱化形式他已经搞定在了,但并不代表Weyl-Berry猜想的证明难度就变简单了。

    这就像是的弱哥德巴赫猜想在13年的五月份就被两名数学家搞定了,但时至今天已经是15年的十一月份了,时间已经过去了整整两年多,可哥德巴赫猜想被完整的证明依旧遥遥无期一样。

    徐川也并不觉得自己能在证明Weyl-Berry猜想的弱化形式后短时间内能搞定Weyl-Berry猜想。

    哪怕有上辈子的一些数学知识打底,哪怕他已经搞定了弱Weyl-Berry猜想,但他也不觉得自己能在一两年的时间内就解决掉完整的Weyl-Berry猜想。

    可数学这东西,有时候是真的依赖灵感。

    灵感不够的时候,就像是写小说断更一样,便秘一个月都更不出来一章。

    灵感来了,在基础知识足够扎实的时候,你很快就能解决掉一个又一个的问题。

    手中的黑色签字笔在洁白的A4纸上不断的勾勒出一個个的字符。

    “.....从Weyl定理3.2出发,构造一个有界且连通的开集Ω,设Ω为满足以上条件(C)的R²(n≥2)中有界连通区域,其边界具有内Minkowski维数δ∈(n-1,n),则有λ→+∞,且有:

    N(λ)-ϕ(λ)≤-Cn,δ(λ/π²)δ/2.....Pn(t+o(1))+o(δˆλ/π²)

    这里的Pn(t)是3.2项定理的函数表达式。

    证明:若在开方块Qκξ的各个边的切口(或洞)处加Neuman边界条件,而其他地方仍保持优Dirichlet边界条件,这时对应的计数函数记为N(λ,Qκξ)。

    于是我们有:N(λ)-ϕ(λ)≤∑∞/k=0#......

    在灵感得来初期,徐川下笔如有神助一般,很快就将Weyl-Berr

    (本章未完,请点击下一页继续阅读)

最新网址:wap.88106.info