第四十七章 计划证明凯勒几何两大猜想

    第四十七章 计划证明凯勒几何两大猜想 (第3/3页)

上一世曾浏览过国内官媒报道的一个新闻。

    国内两位数学家证明了微分几何学的两大核心猜想。

    “哈密尔顿-田”与“偏零阶估计”是数学界微分几何学领域中的两大猜想。

    这两个猜想都提出于20世纪90年代,也算是数学界的两个核心猜想。

    齐羡记得当时新闻中有一句话:这个猜想的论文号称世界上只有十个人能看懂。

    这两大猜想目前还未被证明。

    可惜,国内已经有人发表了关于证明这两个猜想的论文。

    那么到底该证明哪个数学猜想呢?

    片刻之后,齐羡终于想到要证明哪个猜想了。

    “凯勒几何两大核心猜想”。

    凯勒流形(Kähler manifold)是数学里的一个概念。

    是指满足一个可积性条件的酉结构(一个U(n)-结构)的流形。

    同时它也是一个黎曼流形、复流形以及辛流形,而且这三个结构是两两相容的。

    凯勒流形在数学中的微分几何、黎曼几何等领域里都有着重要的地位。

    关于凯勒流形上常标量曲率度量的存在性,有三大著名核心猜想:强制性猜想、测地稳定性猜想、稳定性猜想。

    在60多年以来,这是几何研究中的核心问题之一。

    齐羡记得这三大核心猜想之中,现在还有两大猜想未被证明。

    “强制性猜想”与“测地稳定性猜想”。

    齐羡已经计划证明这两个猜想。

    齐羡先不使用【悟性逆天】,毕竟他还要积累学习天数用来证明黎曼猜想。

    他的计划是先购买有关的书籍。

    学习微分几何,还有黎曼几何的数学知识。

    齐羡会一边使用【过目不忘】+【一目十行】学习微分几何方面书籍的知识,一边通过【疯狂笔记】+【手写如风】不断获得新感悟和新理解,来一点一滴的写证明凯勒流形两大猜想的论文。

    最后实在不行,再使用【悟性逆天】。

    发表论文所需要掌握的数学知识,齐羡一定会都扎实的完全掌握。

    只要能成功刊发,到时在国内学术圈一定会引起不小的轰动!

    到时候官媒也会这样报道:我国某位18岁的年轻数学家成功证明凯勒几何两大核心猜想!